Step | Image | Equation | Discussion |
1 |
![](../../images/t/ti_cofunction.png) |
and . |
This is the definition of sine and cosine using the angle θ. |
2 |
![](../../images/t/ti_cofunction.png) |
and . |
This is the definition of sine and cosine using the angle θ. |
3 |
![](../../images/t/ti_cofunction.png) |
and . |
This is the definition of sine and cosine using the angle φ. |
4 |
![](../../images/t/ti_cofunction.png) |
and ![cos theta = sin phi.](../../equations/t/ti_cofunctioneqn06.png) |
Apply the transitive property of equality to equate
sin θ with
cos φ and
cos θ with
sin φ. |
5 |
![](../../images/t/ti_cofunction.png) |
α + β + γ
= π |
This is the Angle Sum Theorem. |
6 |
![](../../images/t/ti_cofunction.png) |
![theta + phi + pi/2 = pi](../../equations/t/ti_cofunctioneqn07.png) |
Use the subsitution property of equality to substitute θ for
α, φ for β and
for γ. |
7 |
![](../../images/t/ti_cofunction.png) |
![theta + phi + pi/2 - pi/2 = pi - pi/2](../../equations/t/ti_cofunctioneqn08.png) |
Apply additive property of equality to add - to both sides
of the equation. |
8 |
![](../../images/t/ti_cofunction.png) |
![theta + phi = pi/2](../../equations/t/ti_cofunctioneqn09.png) |
Simplify the equation by combining the constants on both sides of the equation. |
9 |
![](../../images/t/ti_cofunction.png) |
![theta + phi - theta = pi/2 - theta](../../equations/t/ti_cofunctioneqn10.png) |
Apply the addition property of equality to add -θ to both sides
of the equation. |
10 |
![](../../images/t/ti_cofunction.png) |
![phi = pi/2 - theta](../../equations/t/ti_cofunctioneqn11.png) |
Cancel θ - θ on
the left side of the equation. |
11 |
![](../../images/t/ti_cofunction.png) |
and ![sin(pi/2 - theta) / cos(pi/2 - theta) = cos theta / sin theta implies tan(pi/2 - theta) = cot(theta)](../../equations/t/ti_cofunctioneqn13.png) |
Take the equations from step 4 and apply the subsitution property of equality
with the equations from step 10. These are the first two cofunction identities. |
12 |
![](../../images/t/ti_cofunction.png) |
![sin(pi/2 - theta) / cos(pi/2 - theta) = cos theta / sin theta implies tan(pi/2 - theta) = cot(theta)](../../equations/t/ti_cofunctioneqn13.png) |
Use the equations from step 11, and the defintions of tangent and cotangent
to get the tangent identity. |
13 |
![](../../images/t/ti_cofunction.png) |
![cos(pi/2 - theta) / sin(pi/2 - theta) = sin theta / cos theta implies cot(pi/2 - theta) = tan theta](../../equations/t/ti_cofunctioneqn14.png) |
Use the equations from step 11, and the defintions of tangent and cotangent
to get the cotangent identity. |
14 |
![](../../images/t/ti_cofunction.png) |
![1 / sin(pi/2 - theta) = 1 / cos( theta) implies csc(pi/2 - theta) = sec(theta)](../../equations/t/ti_cofunctioneqn15.png) |
Use the equations from step 11, and the defintions of tangent and cotangent
to get the cosecant identity. |
15 |
![](../../images/t/ti_cofunction.png) |
![1 / cos(pi/2 - theta) = 1 / sin( theta) implies sec(pi/2 - theta) = csc(theta)](../../equations/t/ti_cofunctioneqn16.png) |
Use the equations from step 11, and the defintions of tangent and cotangent
to get the secant identity. |
12/21/2018: Reviewed and corrected IPA pronunication. (
7/4/2018: Removed broken links, updated license, implemented new markup, implemented new Geogebra protocol. (
4/29/2011: Initial version. (